Transforms
-in the context of probability
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Terminology

« PDF : Probability Density Function
« PMF : Probability Mass Function
 Expectation :

E[X]= T x.f(x).dx

—0Q0
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Drake and Bertsekas differ....

 The two texts diverge in their definitions of ‘transforms’ in
the context of probability

- Add into that the way I was taught as an Engineering Student!

« Drake goes into transforms more deeply and is closer to my
understanding of s-transforms (Laplace)
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Bertsekas
M, (s)=E[e™]

M(s)=) €. py(x)

M(s)= | e f(x)dx

The Drake definition is
consistent with every other text |
can find on the Laplace
Transform! (and my engineering
education)
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Drake Ex.4.1 - Discrete
l,ifx=2
2

(1) =+ é’ifx:3 The PMF

1
—ifx=5
3 if

M(s)= l.ez‘s +l.e3‘s +l.es's
2 6 3
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Drake Ex.4.4-Linear function of RV

 This is an important result used later:
- If X is a RV, and:

Y=a.X+b

M,(s)=E [es(“‘x”’)] =e” . E [esax } =e" M, (sa)

Linear property of transforms
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Drake Ex.4.5 - Continuous

1 -y

e ?

« Normal Distribution fy()’)=

ﬁ

-
M,(s)= T \/217.8 2 .e".dy

2 2 2
X s ()

5 ~
:ez. 1 ]ge 2 2 dy
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Transform of any Normal with non
unity SD and Mean/Expectation

e Using previous 2 results:
if X=0.Y+u

e Then the transform of this new Normal distribution is:

o’ .s*
L. s

M, (s)=e"*. M, (s.0)= e[ ?

J Rayfield 9



From Transforms to Moments

« '‘Moment generating functions’ : Transforms
— Different ‘moments’ are easily computed once we have the
transform
— Proof based on differentiating both sides of the original

transform equation _
M(sy="} e (x).dx
d d

EM(S)ZE T e . fy(x).dx

—0Q

— T di.e”.fx(x).dx

\)

—0Q0

= T x.e”. fy(x).dx

—0Q0
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Now consider case with s=0

iM(s)

= T X fy(x).dx=E[X]
ds

s=0 —o0

It can be shown that this holds for the nth differential:

dl’l
ds"

= T X" fy(x).dx=E[X"]

s=0  —°

M(s)

This basically tells us that once we have the transform of the RV, then we

can quickly compute the nth moment by taking the nth differential of that
transform

J Rayfield
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Ex.4.6

%,ifsz
o From Ex.4.1 n=) ifx=3
%,ifx=5
d
E[X]=—M(s)
dS s=0
1 S 5 S
=e” +—.e’+=.¢’
2 3
19
6
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Transforms Part2
2/1/11
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Inversion of Transforms

 Transforms are usually ‘reversed’ by recognizing a ‘form’
from a table.

- Ex.4.7

M(s)= l.e_s +l+l.e4's +l.es‘s
4 2 8 8

e This is of the form:
M(s)= Zes‘x.px (x)
e And so we deduce that Px is a discrete random variable

with: L bl ol G
P(X=-1)=— P(X=0)=— PX=4)=— P(X=5)=-
(X=-D=, PX=0=2 PX=h=o PX=5=g
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Transform of a mix of two Dist.

e Ex.4.9

— Combination of two exponential distributions

2 —6x 1 —4x
x)=—.6e " +—4e
Jfx(x) 3 3

M(s)= _[ mes'x.(%ﬁe_m +l.4e_4xj.dx
0 3 3
_ 2 ® sx —6x 1 ® sx —4x
M(s)—gjoe .6¢e dx+§JOe Adedx

So the transform of the sum of two pdfs is just the sum of the transforms of
the two pdfs

if =P faWM+ et p, [0 (V)

then M, (s)=pM ,(s)+.....+p M _(s)
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Sum of Independent RVs corresponds
to multiplication of their transforms

« Note:

— Multiplication in the transform domain is equivalent to
convolution in the original variable or function
= In this case the pdfs would be convolved with each other

« X andyY are independent RVs, W=X+Y
M, (s)=E[e" |= B[ ™ |=E[*.e" ]
If s is considered fixed:
MW(S):E:eSX.eSY]:E[esx].E[esy]:MX(s).MY(s)

Generalizing: ¢
W=X+....X,
then
M, (s)=M . ($).M s ()..c........ My, ()=] M ,.(5)
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Sum of independent Normal RVs

« XandY are independent normal RVs with:

means : [, and [ | ~(x- /;)2
Variances:C)')f&()'y2 fX(x):—.e 2.0
27O
oo.st o;.8°
M (s)=e > ', M,/(s)=e 2
M, (s)= e(dif 3)52+(“x+“y)s

The transform is the same as the transform of a single Normal RV
-with the means and variances summed
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Sums of Independent RVs

« If X &Y are independent RVs, then the distribution of their
sum W=X+Y can be obtained by using the product of the
transforms of the distributions of X and Y and then doing an
inverse transform

e Alternatively it can be computed directly using
convolution....
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Discrete Case of Convolution

« X&Y are independent integer valued RVs with PMFs PX(x)
and PY(y)

P,(w)=P(X+Y)

for w being an
- Z P(XZX&Y:y) integer o

(x,y)x+y=w

=Y P(X=x&Y =(w—x))

:pr(x)py (w=x) Convolution
X sum
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Continuous case of convolution

« X &Y are independent continuous RVs with PDFs f(x) and
f(y) respectively

F,(w)=P(W<w) Find the CDF expression for
= P(X+Y)<w) the summed RVs

- :):—oo J.yt__ifX (x)f, (y)dy.dx
- ..;_wfx(x)[ J.yv:;fy (y).dy}. dx

_ °°m £ (x).F, (w=x)dx

Continued...
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Continuous convolution cont.

« The PDFof W is then obtained by differentiating the
expression for the CDF:

fw(w)= Py (w)

dw

=—j (X F,(w—x)dx
W o -

e fX(x)dFY(w—x)dx

v e dw
N _ Convolution
J . fX (x)fY (w—x)dx integral
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Ex 4.14

« X&Y are independent and uniformly distributed in the
interval [0,1] (and so the height of the pdf is 1). The PDF of
W=X+Y :

5 1 for0<x<1
fW(W):J_wfx(x)fy(W—X)dx fx(x):{ 0 otherwize

fY(y)={ I forO<(w—x)<1

So from w=0 to w=2, 0 otherwize
small dx increments Jw (W)
get summed to
produce a triangular 1
distribution ‘
0 2 W
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