
Transforms
-in the context of probability
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Terminology

• PDF : Probability Density Function

• PMF : Probability Mass Function

• Expectation : 

E[X] = x. f (x).dx
−∞

∞

∫
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Drake and Bertsekas differ….

• The two texts diverge in their definitions of ‘transforms’ in 
the context of probability

– Add into that the way I was taught as an Engineering Student!

• Drake goes into transforms more deeply and is closer to my 
understanding of s-transforms (Laplace)
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Bertsekas

M X (s) = E[esX
]

Drake

M (s) = e
s.x

.pX (x)
x

∑

M (s) = e
s.x

. fX (x).
−∞

∞

∫ dx

fx (s) = E[e
−s. x

]

Signs!

The Drake definition is 

consistent with every other text I 

can find on the Laplace 

Transform! (and my engineering 

education)
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Drake Ex.4.1 - Discrete

px (x) =

1

2
, if x = 2

1

6
, if x = 3

1

3
, if x = 5















M (s) =
1

2
.e

2.s +
1

6
.e

3.s +
1

3
.e

5.s

The PMF
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Drake Ex.4.4-Linear function of RV

• This is an important result used later:

– If X is a RV, and:

Y = a.X + b

MY (s) = E es(a.X+b) = esb
.E esaX = esbMX (sa)

Linear property of transforms
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Drake Ex.4.5 - Continuous

• Normal Distribution fY (y) =
1

2.π
.e

−y2

2

MY (s) =
1

2.π
.e

−y
2

2 .e
s. y

.dy
−∞

∞

∫

=
1

2.π
e

−y2

2
+s.y

−∞

∞

∫ dy

= e
s

2

2 .
1

2.π
e

−(
y

2

2
)+s. y−(

s
2

2
)

dy
−∞

∞

∫

= e
s

2

2 .
1

2.π
e

−(y−s)
2

2

−∞

∞

∫ dy

Comes from normalization 

property.

∴MY (s) = e
s2

2
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Transform of any Normal with non 
unity SD and Mean/Expectation

• Using previous 2 results:

if X = σ .Y + µ

• Then the transform of this new Normal distribution is:

M X (s) = es.µ
.MY (s.σ ) = e

σ 2
.s

2

2
+µ.s











9
J Rayfield



10

From Transforms to Moments

• ‘Moment generating functions’ : Transforms

– Different ‘moments’ are easily computed once we have the 
transform

– Proof based on differentiating both sides of the original 
transform equation

M (s) = e
s.x

. fX (x).
−∞

∞

∫ dx

d

ds
M (s) =

d

ds
e

sx
. fX (x).dx

−∞

∞

∫

=
d

ds
.

−∞

∞

∫ e
sx

. fX (x).dx

= x.esx

−∞

∞

∫ . fX (x).dx

J Rayfield



11

Now consider case with s=0

d

ds
M (s)

s=0

= x
−∞

∞

∫ . fX (x).dx = E[X]

It can be shown that this holds for the nth differential:

d
n

dsn
M (s)

s=0

= x
n

−∞

∞

∫ . fX (x).dx = E[X
n
]

This basically tells us that once we have the transform of the RV, then we 

can quickly compute the nth moment by taking the nth differential of that 

transform
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Ex.4.6

• From Ex.4.1 px (x) =

1

2
, if x = 2

1

6
, if x = 3

1

3
, if x = 5















M (s) =
1

2
.e

2.s +
1

6
.e

3.s +
1

3
.e

5.s

E[X] =
d

ds
M (s)

s=0

= e
2s +

1

2
.e

3s +
5

3
.e

5s

s=0

=
19

6
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Inversion of Transforms

• Transforms are usually ‘reversed’ by recognizing a ‘form’ 
from a table.

• Ex.4.7

• This is of the form:

• And so we deduce that Px is a discrete random variable 
with:

M (s) =
1

4
.e

−s +
1

2
+

1

8
.e

4.s +
1

8
.e

5.s

M (s) = e
s.x

.pX (x)
x

∑

P(X = −1) =
1

4
P(X = 0) =

1

2
P(X = 4) =

1

8
P(X = 5) =

1

8
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Transform of a mix of two Dist.

• Ex.4.9

– Combination of two exponential distributions

fX (x) =
2

3
.6e

−6 x +
1

3
.4e

−4 x

M (s) = es.x
.

2

3
.6e−6 x +

1

3
.4e−4 x







.

0

∞

∫ dx

M (s) =
2

3
e

s. x
.6e

−6 x

0

∞

∫ dx +
1

3
e

s. x
.4e

−4 x

0

∞

∫ dx

So the transform of the sum of two pdfs is just the sum of the transforms of 

the two pdfs
if fY (y) = p1 fx1(y)+...... + pn fxn (y)

then MY (s) = p1M x1(s)+...... + pnM xn (s)
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Sum of Independent RVs corresponds 
to multiplication of their transforms

• Note:

– Multiplication in the transform domain is equivalent to 
convolution in the original variable or function

� In this case the pdfs would be convolved with each other

• X and Y are independent RVs, W=X+Y

MW (s) = E e
sW = E e

s X+Y( )



= E e

sX
.e

sY 

MW (s) = E e
sX

.e
sY = E e

sX .E e
sY = M X s( ).MY (s)

If s is considered fixed:

Generalizing: if

W = X
1
+ .......Xn,

then

MW (s) = M X1
(s).MX 2

(s)...........M Xn (s) = M Xn (s)
n

∏
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Sum of independent Normal RVs

• X and Y are independent normal RVs with:

means : µx and µy

var iances :σ x

2
&σ y

2 fX (x) =
1

2πσ
.e

− x−µ( )
2

2.σ 2

M X (s) = e
σ x

2
.s

2

2
+µx

s

, MY (s) = e

σ y
2
.s

2

2
+µy

s

MW (s) = e

σ x
2+σ y

2( )s2

2
+ µx +µy( )s

The transform is the same as the transform of a single Normal RV

-with the means and variances summed
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Sums of Independent RVs

• If X & Y are independent RVs, then the distribution of their 
sum W=X+Y can be obtained by using the product of the 
transforms of the distributions of X and Y and then doing an 
inverse transform

• Alternatively it can be computed directly using 
convolution….
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Discrete Case of Convolution

• X&Y are independent integer valued RVs with PMFs PX(x) 
and PY(y)

PW (w) = P(X +Y )

= P X = x&Y = y( )
(x,y):x+y=w

∑

= P(X = x&Y = (w − x))
x

∑

= px (x)py (w − x)
x

∑

for w being any 

integer

Convolution 

sum

J Rayfield
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Continuous case of convolution

• X & Y are independent continuous RVs with PDFs f(x) and 
f(y) respectively

FW (w) = P(W ≤ w)

= P((X +Y ) ≤ w)

= fX (x) fY (y)dy.dx
y=−∞

w−x

∫
x=−∞

∞

∫

= fX (x) fY (y).dy
y=−∞

w−x

∫


.dx

x=−∞

∞

∫

= fX (x).FY (w − x)dx
x=−∞

∞

∫

Find the CDF expression for 

the summed RVs

Continued…
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Continuous convolution cont.

• The PDFof W is then obtained by differentiating the 
expression for the CDF:

fW (w) =
dFW

dw
(w)

=
d

dw
fX (x)FY (w − x)dx

−∞

∞

∫

= fX (x)
dFY (w − x)

dw
dx

−∞

∞

∫

= fX (x) fY (w − x)dx
−∞

∞

∫ Convolution 

integral
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Ex 4.14

• X&Y are independent and uniformly distributed in the 
interval [0,1] (and so the height of the pdf is 1). The PDF of 
W=X+Y :

fW (w) = fX (x)
−∞

∞

∫ fY (w − x)dx fX (x) =
1 for 0 ≤ x ≤1

0 otherwize







fY (y) =
1 for 0 ≤ (w − x) ≤1

0 otherwize





So from w=0 to w=2, 

small dx increments 

get summed to 

produce a triangular 

distribution

fW (w)

2

1

0 w
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