Transforms
 -in the context of probability

Terminology

- PDF : Probability Density Function
- PMF : Probability Mass Function
- Expectation :

$$
E[X]=\int_{-\infty}^{\infty} x \cdot f(x) \cdot d x
$$

Drake and Bertsekas differ....

- The two texts diverge in their definitions of 'transforms' in the context of probability
- Add into that the way I was taught as an Engineering Student!
- Drake goes into transforms more deeply and is closer to my understanding of s-transforms (Laplace)

Bertsekas

$$
\begin{aligned}
& M_{X}(s)=E\left[e^{s X}\right] \\
& M(s)=\sum_{x}^{s, x .} \cdot p_{X}(x) \\
& M(s)=\int_{-\infty}^{\infty} e^{s . x} \cdot f_{X}(x) \cdot d x
\end{aligned}
$$

Drake

Signs!

The Drake definition is consistent with every other text I can find on the Laplace Transform! (and my engineering education)

Drake Ex.4.1-Discrete
 $$
p_{x}(x)=\left\{\begin{array}{l} \frac{1}{2}, \text { if } x=2 \\ \frac{1}{6}, \text { if } x=3 \\ \frac{1}{3}, \text { if } x=5 \end{array} \quad\right. \text { The PMF }
$$
 $$
M(s)=\frac{1}{2} \cdot e^{2 . s}+\frac{1}{6} \cdot e^{3 . s}+\frac{1}{3} \cdot e^{5 . s}
$$

Drake Ex.4.4-Linear function of RV

- This is an important result used later:
- If X is a RV, and:

$$
\begin{aligned}
& Y=a \cdot X+b \\
& M_{Y}(s)=E\left[e^{s(a \cdot X+b)}\right]=e^{s b} \cdot E\left[e^{s a X}\right]=e^{s b} M_{X}(s a)
\end{aligned}
$$

Linear property of transforms

Drake Ex.4.5 - Continuous

- Normal Distribution $f_{Y}(y)=\frac{1}{\sqrt{2 \cdot \pi}} \cdot e^{\frac{-y^{2}}{2}}$

$$
\begin{aligned}
& M_{Y}(s)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \cdot \pi}} \cdot e^{\frac{-y^{2}}{2}} \cdot e^{s \cdot y} \cdot d y \\
& =\frac{1}{\sqrt{2 . \pi}} \int_{-\infty}^{\infty} e^{\frac{-y^{2}}{2}+s . y} d y \\
& =e^{\frac{s^{2}}{2}} \cdot \frac{1}{\sqrt{2 . \pi}} \int_{-\infty}^{\infty} e^{-\left(\frac{y^{2}}{2}\right)+s \cdot y-\left(\frac{\rho^{2}}{2}\right)} d y \\
& =e^{\frac{s^{2}}{2}} \cdot \sqrt{\sqrt{2 \cdot \pi}} \int_{-\infty}^{\infty} e^{-\frac{-(y-5)^{2}}{2}} d y \\
& \text { Comes from normalization } \\
& \text { property. }
\end{aligned}
$$

Transform of any Normal with non unity SD and Mean/Expectation

- Using previous 2 results:

$$
\text { if } X=\sigma . Y+\mu
$$

- Then the transform of this new Normal distribution is:

$$
M_{X}(s)=e^{s . \mu} \cdot M_{Y}(s . \sigma)=e^{\left(\frac{\sigma^{2} \cdot s^{2}}{2}+\mu \cdot s\right)}
$$

From Transforms to Moments

- 'Moment generating functions' : Transforms
- Different 'moments' are easily computed once we have the transform
- Proof based on differentiating both sides of the original

$$
\begin{aligned}
& \text { transform equation } M(s)=\int_{-\infty}^{\infty} e^{s \cdot x} \cdot f_{X}(x) \cdot d x \\
& \begin{aligned}
\frac{d}{d s} M(s) & =\frac{d}{d s} \int_{-\infty}^{\infty} e^{s x} \cdot f_{X}(x) \cdot d x \\
& =\int_{-\infty}^{\infty} \frac{d}{d s} \cdot e^{s x} \cdot f_{X}(x) \cdot d x \\
& =\int_{-\infty}^{\infty} x \cdot e^{s x} \cdot f_{X}(x) \cdot d x
\end{aligned}
\end{aligned}
$$

Now consider case with $\mathbf{s = 0}$

$\left.\frac{d}{d s} M(s)\right|_{s=0}=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \cdot d x=E[X]$
It can be shown that this holds for the nth differential:
$\left.\frac{d^{n}}{d s^{n}} M(s)\right|_{s=0}=\int_{-\infty}^{\infty} x^{n} \cdot f_{X}(x) \cdot d x=E\left[X^{n}\right]$

This basically tells us that once we have the transform of the RV, then we can quickly compute the nth moment by taking the nth differential of that transform

Ex.4.6

$\left\{\frac{1}{2}\right.$, if $x=2$

- From Ex.4.1 $\quad p_{x}(x)=\left\{\begin{array}{l}\frac{1}{6}, \text { if } x=3 \\ \frac{1}{3}, \text { if } x=5\end{array} \quad M(s)=\frac{1}{2} . e^{2 . s}+\frac{1}{6} . e^{3 . s}+\frac{1}{3} \cdot e^{5 . s}\right.$

$$
\begin{aligned}
E[X] & =\left.\frac{d}{d s} M(s)\right|_{s=0} \\
& =e^{2 s}+\frac{1}{2} \cdot e^{3 s}+\left.\frac{5}{3} \cdot e^{5 s}\right|_{s=0} \\
& =\frac{19}{6}
\end{aligned}
$$

Transforms Part2
 2/1/11

Inversion of Transforms

- Transforms are usually 'reversed' by recognizing a 'form' from a table.
- Ex.4.7

$$
M(s)=\frac{1}{4} \cdot e^{-s}+\frac{1}{2}+\frac{1}{8} \cdot e^{4 . s}+\frac{1}{8} \cdot e^{5 . s}
$$

- This is of the form:

$$
M(s)=\sum e^{s . x} \cdot p_{X}(x)
$$

- And so we deduce that Px is a discrete random variable with:

$$
P(X=-1)=\frac{1}{4} \quad P(X=0)=\frac{1}{2} \quad P(X=4)=\frac{1}{8} \quad P(X=5)=\frac{1}{8}
$$

Transform of a mix of two Dist.

- Ex.4.9
- Combination of two exponential distributions

$$
\begin{aligned}
& f_{X}(x)=\frac{2}{3} \cdot 6 e^{-6 x}+\frac{1}{3} \cdot 4 e^{-4 x} \\
& M(s)=\int_{0}^{\infty} e^{s . x} \cdot\left(\frac{2}{3} \cdot 6 e^{-6 x}+\frac{1}{3} \cdot 4 e^{-4 x}\right) \cdot d x \\
& M(s)=\frac{2}{3} \int_{0}^{\infty} e^{s . x} \cdot 6 e^{-6 x} d x+\frac{1}{3} \int_{0}^{\infty} e^{s . x} \cdot 4 e^{-4 x} d x
\end{aligned}
$$

So the transform of the sum of two pdfs is just the sum of the transforms of the two pdfs

$$
\text { if } f_{Y}(y)=p_{1} f_{x 1}(y)+\ldots \ldots .+p_{n} f_{x n}(y)
$$

$$
\text { then } M_{Y}(s)=p_{1} M_{x 1}(s)+\ldots . . .+p_{n} M_{x n}(s)
$$

Sum of Independent RVs corresponds to multiplication of their transforms

- Note:
- Multiplication in the transform domain is equivalent to convolution in the original variable or function
- In this case the pdfs would be convolved with each other
- X and Y are independent RV , $\mathrm{W}=\mathrm{X}+\mathrm{Y}$

$$
M_{W}(s)=E\left[e^{s W}\right]=E\left[e^{s(X+Y)}\right]=E\left[e^{s X} \cdot e^{s Y}\right]
$$

If s is considered fixed:

$$
M_{W}(s)=E\left[e^{s X} \cdot e^{s Y}\right]=E\left[e^{s X}\right] \cdot E\left[e^{s Y}\right]=M_{X}(s) \cdot M_{Y}(s)
$$

Generalizing:

$$
\begin{aligned}
& \text { if } \\
& W=X_{1}+\ldots \ldots . . X_{n},
\end{aligned}
$$

then

$$
M_{W}(s)=M_{X 1}(s) \cdot M_{X 2}(s) \ldots \ldots \ldots . . . M_{X n}(s)=\prod_{X n}(s)
$$

Sum of independent Normal RVs

- X and Y are independent normal RVs with:

$$
\begin{aligned}
& \text { means: } \mu_{x} \text { and } \mu_{y} \\
& \text { variances: } \sigma_{x}^{2} \& \sigma_{y}^{2} \\
& M_{X}(s)=e^{\frac{\sigma_{x}^{2} \cdot s^{2}}{2}+\mu_{x}^{s}}, \quad M_{Y}(x)=e^{\frac{\sigma_{y}^{2} \cdot s^{2}}{\sqrt{2 \pi \sigma}+\mu_{y}^{s}}} \cdot e^{\frac{-(x-\mu)^{2}}{2 \cdot \sigma^{2}}} \\
& M_{W}(s)=e^{\frac{\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right) s^{2}}{2}+\left(\mu_{x}+\mu_{y}\right) s}
\end{aligned}
$$

The transform is the same as the transform of a single Normal RV -with the means and variances summed

Sums of Independent RVs

- If $X \& Y$ are independent RVs, then the distribution of their sum $\mathrm{W}=\mathrm{X}+\mathrm{Y}$ can be obtained by using the product of the transforms of the distributions of X and Y and then doing an inverse transform
- Alternatively it can be computed directly using convolution....

Discrete Case of Convolution

- X\&Y are independent integer valued RVs with PMFs PX(x) and PY(y)
$P_{W}(w)=P(X+Y)$

$$
\begin{array}{ll}
=\sum_{(x, y) x+y=w} P(X=x \& Y=y) & \begin{array}{l}
\text { for w being any } \\
\text { integer }
\end{array} \\
=\sum_{x} P(X=x \& Y=(w-x)) & \longleftarrow \\
=\sum_{x} p_{x}(x) p_{y}(w-x) \quad \begin{array}{l}
\text { Convolution } \\
\text { sum }
\end{array}
\end{array}
$$

Continuous case of convolution

- $X \& Y$ are independent continuous RVs with PDFs $f(x)$ and $f(y)$ respectively

$$
\begin{array}{rlrl}
F_{W}(w) & =P(W \leq w) \longleftarrow & \begin{array}{l}
\text { Find the CDF expression for } \\
\text { the summed RVs }
\end{array} \\
& =P((X+Y) \leq w) & \\
& =\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{w-x} f_{X}(x) f_{Y}(y) d y \cdot d x \\
& =\int_{x=-\infty}^{\infty} f_{X}(x)\left[\int_{y=-\infty}^{w-x} f_{Y}(y) \cdot d y\right] \cdot d x \\
& =\int_{x=-\infty}^{\infty} f_{X}(x) \cdot F_{Y}(w-x) d x
\end{array}
$$

Continued...

Continuous convolution cont.

- The PDFof W is then obtained by differentiating the expression for the CDF:

$$
\begin{aligned}
f_{W}(w) & =\frac{d F_{W}}{d w}(w) \\
& =\frac{d}{d w} \int_{-\infty}^{\infty} f_{X}(x) F_{Y}(w-x) d x \\
& =\int_{-\infty}^{\infty} f_{X}(x) \frac{d F_{Y}(w-x)}{d w} d x \\
& =\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(w-x) d x \longleftarrow
\end{aligned}
$$

Ex 4.14

- X\&Y are independent and uniformly distributed in the interval $[0,1]$ (and so the height of the pdf is 1). The PDF of $W=X+Y$:

$$
f_{W}(w)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(w-x) d x \quad f_{X}(x)=\left\{\begin{array}{c}
1 \text { for } 0 \leq x \leq 1 \\
0 \text { otherwize }
\end{array}\right.
$$

So from $w=0$ to $w=2$, small dx increments get summed to produce a triangular distribution

$$
f_{Y}(y)=\left\{\begin{array}{c}
1 \text { for } 0 \leq(w-x) \leq 1 \\
0 \text { otherwize }
\end{array}\right.
$$

