Difference between revisions of "Machine Learning"

From Noisebridge
Jump to: navigation, search
(Next Meeting)
(Classes)
 
(162 intermediate revisions by 27 users not shown)
Line 1: Line 1:
=== About Us ===
+
=== Join the Mailing List ===
We're a loosely-knit stochastic federation of people who like Noisebridge and like machine learning. What is machine learning? It's broad field that typically involves training computer models to solve problems. How can you participate? Join the [https://www.noisebridge.net/mailman/listinfo/ml mailing list], send an email and introduce yourself. Show up to the next meeting, share your thoughts. Participate in projects or start your own. Go to workshops, write code at workshops, learn stuff, give workshops of your own! All are welcome.
+
 
 +
https://www.noisebridge.net/mailman/listinfo/ml
  
 
=== Next Meeting===
 
=== Next Meeting===
  
*When: Wednesday, 7/27/2011 @ 7:30-9:00pm
+
*When: Thursday, August 14, 2014 @ 6:00pm
*Where: 2169 Mission St. (back corner classroom)
+
*Where: 2169 Mission St. (Church classroom)
*Topic: Nothing specified
+
*Topic:  
*Details: Feel free to host your own topic and fill in the details!
+
*Details:  
*Presenters:
+
*Who: Andy McMurry
 +
 
 +
=== Learn about Data Science and Machine Learning ===
 +
 
 +
===== Classes =====
 +
*[https://www.coursera.org/course/ml Coursera Machine Learning Course with Andrew Ng]
 +
*[https://www.coursera.org/course/compneuro Coursera Computational Neuroscience Course with Rajesh P N Rao and Adrienne Fairhall]
 +
*[http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/ MIT Machine Learning Class with Tommi Jaakkola]
 +
*[http://cs229.stanford.edu/materials.html Stanford CS229]
 +
*[http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml Carnegie Mellon Machine Learning Course with Tom Mitchell]
 +
*[http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/ Linear Algebra with Gilbert Strang]
 +
*[https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH Neural Networks Class with Hugo Larochelle]
  
=== Talks and Workshops ===
+
==== Books ====
We've given lots of workshops and talks over the past year or so, here's a few. Many of the workshops we've given previously are recurring and will be given again, especially upon request!
+
*[http://statweb.stanford.edu/~tibs/ElemStatLearn/ Elements of Statistical Learning]
 +
*[https://www.google.com/search?client=ubuntu&channel=fs&q=pattern+recognition+and+machine+learning&ie=utf-8&oe=utf-8#channel=fs&q=pattern+recognition+and+machine+learning+pdf Pattern Recognition and Machine Learning]
 +
*[https://www.google.com/search?&channel=fs&q=+Information+Theory%2C+Inference%2C+and+Learning+Algorithms.&ie=utf-8&oe=utf-8#channel=fs&q=Information+Theory%2C+Inference%2C+and+Learning+Algorithms+pdf Information Theory, Inference, and Learning Algorithms]
 +
*[http://chimera.labs.oreilly.com/books/1230000000345 Interactive Data Visualization for the Web (D3)]
 +
*[http://cran.r-project.org/doc/manuals/R-intro.pdf Introduction to R]
 +
*[http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf Introduction to Probability (Grinstead and Snell)]
 +
*[http://www.cis.temple.edu/~latecki/Courses/CIS2033-Spring12/A_modern_intro_probability_statistics_Dekking05.pdf Modern Introduction to Probability and Statistics (Kraaikamp and Meester)]
 +
*[http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf Bayesian Reasoning and Machine Learning]
 +
 
 +
==== Tutorials ====
 +
*[http://nbviewer.ipython.org/github/unpingco/Python-for-Signal-Processing/tree/master/ Signal Processing IPython Notebooks]
 +
*[http://scikit-learn.org/stable/tutorial/basic/tutorial.html Introduction to ML with scikits.learn]
 +
*[http://www.sagemath.org/doc/tutorial/ Learn how to use SAGE]
 +
 
 +
==== Noisebridge ML Class Slides ====
 
*[[NBML/Workshops/Intro to Machine Learning|Intro to Machine Learning]]
 
*[[NBML/Workshops/Intro to Machine Learning|Intro to Machine Learning]]
 
*[[NBML/Workshops/Brief Tour of Statistics|A Brief Tour of Statistics]]
 
*[[NBML/Workshops/Brief Tour of Statistics|A Brief Tour of Statistics]]
Line 19: Line 45:
 
*[[NBML/Workshops/Random Forests|Random Forests]]
 
*[[NBML/Workshops/Random Forests|Random Forests]]
 
*[[NBML/Workshops/Independent Components Analysis|Independent Components Analysis]]
 
*[[NBML/Workshops/Independent Components Analysis|Independent Components Analysis]]
+
*[[NBML/Workshops/Deep Nets|Deep Nets]]
 +
 
 
=== Code and SourceForge Site ===
 
=== Code and SourceForge Site ===
 
*We have a [http://sourceforge.net/projects/ml-noisebridge Sourceforge Project]
 
*We have a [http://sourceforge.net/projects/ml-noisebridge Sourceforge Project]
Line 27: Line 54:
  
 
=== Future Talks and Topics, Ideas ===
 
=== Future Talks and Topics, Ideas ===
*Boltzmann Machines, Deep Nets (Mike S, August 2011)
+
*Random Forests in R
*Graphical Models (Tony)
+
*Restricted Boltzmann Machines (Mike S, some day)
 +
*Analyzing brain cells (Mike S)
 +
*Deep Nets w/ Stacked Autoencoders (Mike S, some day)
 +
*Generalized Linear Models (Mike S, Erin L? some day)
 +
*Graphical Models
 
*Working with the Kinect
 
*Working with the Kinect
 
*Computer Vision with OpenCV
 
*Computer Vision with OpenCV
 
=== Mailing List ===
 
 
https://www.noisebridge.net/mailman/listinfo/ml
 
  
 
=== Projects ===
 
=== Projects ===
Line 53: Line 80:
 
*[http://metaoptimize.com/qa/ Metaoptimize]
 
*[http://metaoptimize.com/qa/ Metaoptimize]
 
*[http://www.quora.com/Machine-Learning Quora ML Page]
 
*[http://www.quora.com/Machine-Learning Quora ML Page]
 +
*[http://www.metoffice.gov.uk/research/climate/climate-monitoring/land-and-atmosphere/surface-station-records A ton of Weather Data]
 +
*[http://mlcomp.org/ MLcomp]
 +
**Upload your algorithm and objectively compare it's performance to other algorithms
 +
*[http://www.ntis.gov/products/ssa-dmf.aspx Social Security Death Master File!]
 +
*[http://www.sipri.org/databases SIPRI Social Databases]
 +
**Wealth of information on international arms transfers and peace missions.
 +
*[http://aws.amazon.com/publicdatasets/ Amazon AWS Public Datasets]
 +
*[http://www.prio.no/Data/Armed-Conflict/ UCDP/PRIO Armed Conflict Datasets]
 +
*[https://opendata.socrata.com/browse Socrata Government Datasets]
 +
*[http://us-city.census.okfn.org/ US City Census Data]
 +
*[http://webscope.sandbox.yahoo.com/catalog.php Yahoo Labs Datasets]
  
 +
=== Software Tools ===
  
=== [[Machine Learning/Tools | Software Tools]] ===
+
==== Generic ML Libraries ====
*[http://opencv.willowgarage.com/documentation/index.html OpenCV]
 
**Computer Vision Library
 
**Has ML component (SVM, trees, etc)
 
**Online tutorials [http://www.pages.drexel.edu/~nk752/tutorials.html here]
 
*[http://lucene.apache.org/mahout/ Mahout]
 
**Hadoop cluster based ML package.
 
 
*[http://www.cs.waikato.ac.nz/ml/weka/ Weka]
 
*[http://www.cs.waikato.ac.nz/ml/weka/ Weka]
 
**a collection of data mining tools and machine learning algorithms.
 
**a collection of data mining tools and machine learning algorithms.
*[http://moa.cs.waikato.ac.nz/ MOA (Massive Online Analysis)]
 
**Offshoot of weka, has all online-algorithms
 
 
*[http://scikit-learn.sourceforge.net/ scikits.learn]
 
*[http://scikit-learn.sourceforge.net/ scikits.learn]
 
**Machine learning Python package
 
**Machine learning Python package
 +
*[http://pypi.python.org/pypi/scikits.statsmodels scikits.statsmodels]
 +
**Statistical models to go with scipy
 +
*[http://pybrain.org PyBrain]
 +
**Does feedforward, recurrent, SOM, deep belief nets.
 
*[http://www.csie.ntu.edu.tw/~cjlin/libsvm/ LIBSVM]
 
*[http://www.csie.ntu.edu.tw/~cjlin/libsvm/ LIBSVM]
 
**c-based SVM package
 
**c-based SVM package
 
*[http://pyml.sourceforge.net PyML]
 
*[http://pyml.sourceforge.net PyML]
 
*[http://mdp-toolkit.sourceforge.net/ MDP]
 
*[http://mdp-toolkit.sourceforge.net/ MDP]
**Does not stand for Markov Decision Process :(
+
**Modular framework, has lots of stuff!
*[http://www.ailab.si/orange/ Orange]
 
**Strong data visualization component
 
*[http://jmlr.csail.mit.edu/mloss/ Journal of Machine Learning Software List]
 
 
*[[Machine Learning/VirtualBox|VirtualBox]] Virtual Box Image with Pre-installed Libraries listed here
 
*[[Machine Learning/VirtualBox|VirtualBox]] Virtual Box Image with Pre-installed Libraries listed here
*[http://deeplearning.net/software/theano/ Theano: Symbolic Expressions and Transparent GPU Integration]
+
*[http://sympy.org sympy] Does symbolic math
 
*[http://waffles.sourceforge.net/ Waffles]
 
*[http://waffles.sourceforge.net/ Waffles]
 
**Open source C++ set of machine learning command line tools.
 
**Open source C++ set of machine learning command line tools.
 
*[http://rapid-i.com/content/view/181/196/ RapidMiner]
 
*[http://rapid-i.com/content/view/181/196/ RapidMiner]
 
*[http://www.mrpt.org/ Mobile Robotic Programming Toolkit]
 
*[http://www.mrpt.org/ Mobile Robotic Programming Toolkit]
 +
*[http://nipy.sourceforge.net/nitime/ nitime]
 +
**NeuroImaging in Python, has some good time series analysis stuff and multi-variate response fitting.
 +
*[http://pandas.pydata.org/ Pandas]
 +
**Data analysis workflow in python
 +
*[http://www.pytables.org/moin PyTables]
 +
**Adds querying capabilities to HDF5 files
 +
*[http://statsmodels.sourceforge.net/ statsmodels]
 +
**Regression, time series analysis, statistics stuff for python
 +
*[https://github.com/JohnLangford/vowpal_wabbit/wiki Vowpal Wabbit]
 +
**"Intrinsically Fast" implementation of gradient descent for large datasets
 +
*[http://www.shogun-toolbox.org/ Shogun]
 +
**Fast implementations of SVMs
 +
*[http://www.mlpack.org/ MLPACK]
 +
**High performance scalable ML Library
 +
*[http://www.torch.ch/ Torch]
 +
**MATLAB-like environment for state-of-the art ML libraries written in LUA
 +
 +
==== Deep Nets ====
 +
*[http://deeplearning.net/software/theano/ Theano]
 +
**Symbolic Expressions and Transparent GPU Integration
 +
*[http://caffe.berkeleyvision.org/ Caffe]
 +
**Convolutional Neural Networks on GPU
 +
*[https://code.google.com/p/neurolab/ Neurolab]
 +
**Has support for recurrent neural nets
 +
 +
==== Online ML ====
 +
*[http://moa.cs.waikato.ac.nz/ MOA (Massive Online Analysis)]
 +
**Offshoot of weka, has all online-algorithms
 +
*[http://jubat.us/en/ Jubatus]
 +
**Distributed Online ML
 +
*[http://dogma.sourceforge.net/ DOGMA]
 +
**MATLAB-based online learning stuff
 +
*[http://code.google.com/p/libol/ libol]
 +
*[http://code.google.com/p/oll/ oll]
 +
*[http://code.google.com/p/scw-learning/ scw-learning]
 +
 +
==== Graphical Models ====
 +
*[http://www.mrc-bsu.cam.ac.uk/bugs/ BUGS]
 +
**MCMC for Bayesian Models
 +
*[http://mcmc-jags.sourceforge.net/ JAGS]
 +
**Hierarchical Bayesian Models
 +
*[http://mc-stan.org/ Stan]
 +
**A graphical model compiler
 +
*[https://github.com/kutschkem/Jayes Jayes]
 +
**Bayesian networks in Java
 +
*[http://tops.sourceforge.net/ ToPS]
 +
**Probabilistic models of sequences
 +
*[http://pymc-devs.github.io/pymc/ PyMC]
 +
**Bayesian Models in Python
 +
 +
==== Text Stuff ====
 +
*[http://www.crummy.com/software/BeautifulSoup/ Beautiful Soup]
 +
**Screen-scraping tools
 +
*[http://www.mlsec.org/sally/ SALLY]
 +
**Tool for embedding strings into vector spaces
 +
*[http://radimrehurek.com/gensim/ Gensim]
 +
**Topic modeling
 +
 +
==== Collaborative Filtering ====
 +
*[http://prea.gatech.edu/ PREA]
 +
**Personalized Recommendation Algorithms Toolkit
 +
*[http://svdfeature.apexlab.org/wiki/Main_Page SVDFeature]
 +
**Collaborative Filtering and Ranking Toolkit
 +
 +
==== Computer Vision ====
 +
*[http://opencv.willowgarage.com/documentation/index.html OpenCV]
 +
**Computer Vision Library
 +
**Has ML component (SVM, trees, etc)
 +
**Online tutorials [http://www.pages.drexel.edu/~nk752/tutorials.html here]
 +
*[http://drwn.anu.edu.au/ DARWIN]
 +
**Generic C++ ML and Computer Vision Library
 +
*[http://sourceforge.net/projects/petavision/ PetaVision]
 +
**Developing a real-time, full-scale model of the primate visual cortex.
 +
 +
==== Audio Processing ====
 +
*[http://tlecomte.github.com/friture/ Friture]
 +
**Real-time spectrogram generation
 +
*[http://code.google.com/p/pyo/ pyo]
 +
**Real-time audio signal processing
 +
*[https://github.com/jsawruk/pymir PYMir]
 +
**A library for reading mp3's into python, and doing analysis
 +
*[http://www.fon.hum.uva.nl/praat/ PRAAT]
 +
**Speech analysis toolkit
 +
*[http://ofer.sci.ccny.cuny.edu/sound_analysis_pro Sound Analysis Pro]
 +
**Tool for analyzing animal sounds
 +
*[http://luscinia.sourceforge.net/ Luscinia]
 +
**Software for archiving, measuring, and analyzing bioacoustic data
 +
*[http://wiki.python.org/moin/PythonInMusic List of Sound Tools for Python]
 +
*[http://jasperproject.github.io/ Jasper]
 +
**Voice-control anything!
 +
 +
==== Data Visualization ====
 +
*[http://www.ailab.si/orange/ Orange]
 +
**Strong data visualization component
 
*[http://gephi.org/ Gephi]
 
*[http://gephi.org/ Gephi]
 
**Graph Visualization
 
**Graph Visualization
 
*[http://had.co.nz/ggplot2/ ggplot]
 
*[http://had.co.nz/ggplot2/ ggplot]
 
**Nice plotting package for R
 
**Nice plotting package for R
 +
*[http://code.enthought.com/projects/mayavi/ MayaVi2]
 +
**3D Scientific Data Visualization
 +
*[http://cytoscape.github.io/cytoscape.js/ Cytoscape]
 +
**A JavaScript graph library for analysis and visualisation
 +
*[https://plot.ly/ plot.ly]
 +
**Web-based plotting
 +
*[http://chimera.labs.oreilly.com/books/1230000000345/ch02.html D3 Ebook]
 +
**Has a good list of HTML/CSS/Javascript data visualization tools.
 +
*[https://plot.ly/ plotly]
 +
**Python plotting tool
 +
==== Cluster Computing ====
 +
*[http://lucene.apache.org/mahout/ Mahout]
 +
**Hadoop cluster based ML package.
 +
*[http://web.mit.edu/star/cluster/ STAR: Cluster]
 +
**Easily build your own Python computing cluster on Amazon EC2
 +
 +
==== Database Stuff ====
 +
*[http://madlib.net/ MADlib]
 +
**Machine learning algorithms for in-database data
 +
*[http://www.joyent.com/products/manta Manta]
 +
**Distributed object storage
 +
 +
==== Neural Simulation ====
 +
*[http://nengo.ca/ Nengo]
 +
 +
==== Other ====
 +
*[http://jmlr.csail.mit.edu/mloss/ Journal of Machine Learning Software List]
  
 
=== Presentations and other Materials ===
 
=== Presentations and other Materials ===
Line 94: Line 247:
 
* [http://www.linkedin.com/groupAnswers?viewQuestionAndAnswers=&discussionID=20096092&gid=77616&trk=EML_anet_qa_ttle-0Nt79xs2RVr6JBpnsJt7dBpSBA LinkedIn] discussion on good resources for data mining and predictive analytics
 
* [http://www.linkedin.com/groupAnswers?viewQuestionAndAnswers=&discussionID=20096092&gid=77616&trk=EML_anet_qa_ttle-0Nt79xs2RVr6JBpnsJt7dBpSBA LinkedIn] discussion on good resources for data mining and predictive analytics
 
* [http://www.face-rec.org/algorithms/ Face Recognition Algorithms]
 
* [http://www.face-rec.org/algorithms/ Face Recognition Algorithms]
 +
* [http://www.ics.uci.edu/~welling/classnotes/classnotes.html Max Welling's ML classnotes]
  
 
=== Topics to Learn and Teach ===
 
=== Topics to Learn and Teach ===
Line 138: Line 292:
  
 
=== [[Machine Learning/Meeting Notes|Meeting Notes]]===
 
=== [[Machine Learning/Meeting Notes|Meeting Notes]]===
 +
 +
[[Category:Events]]
 +
[[Category:Projects]]

Latest revision as of 11:17, 10 October 2016

Join the Mailing List[edit]

https://www.noisebridge.net/mailman/listinfo/ml

Next Meeting[edit]

  • When: Thursday, August 14, 2014 @ 6:00pm
  • Where: 2169 Mission St. (Church classroom)
  • Topic:
  • Details:
  • Who: Andy McMurry

Learn about Data Science and Machine Learning[edit]

Classes[edit]

Books[edit]

Tutorials[edit]

Noisebridge ML Class Slides[edit]

Code and SourceForge Site[edit]

    git clone git://ml-noisebridge.git.sourceforge.net/gitroot/ml-noisebridge/ml-noisebridge
  • Send an email to the list if you want to become an administrator on the site to get write access to the git repo!

Future Talks and Topics, Ideas[edit]

  • Random Forests in R
  • Restricted Boltzmann Machines (Mike S, some day)
  • Analyzing brain cells (Mike S)
  • Deep Nets w/ Stacked Autoencoders (Mike S, some day)
  • Generalized Linear Models (Mike S, Erin L? some day)
  • Graphical Models
  • Working with the Kinect
  • Computer Vision with OpenCV

Projects[edit]

Datasets and Websites[edit]

Software Tools[edit]

Generic ML Libraries[edit]

  • Weka
    • a collection of data mining tools and machine learning algorithms.
  • scikits.learn
    • Machine learning Python package
  • scikits.statsmodels
    • Statistical models to go with scipy
  • PyBrain
    • Does feedforward, recurrent, SOM, deep belief nets.
  • LIBSVM
    • c-based SVM package
  • PyML
  • MDP
    • Modular framework, has lots of stuff!
  • VirtualBox Virtual Box Image with Pre-installed Libraries listed here
  • sympy Does symbolic math
  • Waffles
    • Open source C++ set of machine learning command line tools.
  • RapidMiner
  • Mobile Robotic Programming Toolkit
  • nitime
    • NeuroImaging in Python, has some good time series analysis stuff and multi-variate response fitting.
  • Pandas
    • Data analysis workflow in python
  • PyTables
    • Adds querying capabilities to HDF5 files
  • statsmodels
    • Regression, time series analysis, statistics stuff for python
  • Vowpal Wabbit
    • "Intrinsically Fast" implementation of gradient descent for large datasets
  • Shogun
    • Fast implementations of SVMs
  • MLPACK
    • High performance scalable ML Library
  • Torch
    • MATLAB-like environment for state-of-the art ML libraries written in LUA

Deep Nets[edit]

  • Theano
    • Symbolic Expressions and Transparent GPU Integration
  • Caffe
    • Convolutional Neural Networks on GPU
  • Neurolab
    • Has support for recurrent neural nets

Online ML[edit]

Graphical Models[edit]

  • BUGS
    • MCMC for Bayesian Models
  • JAGS
    • Hierarchical Bayesian Models
  • Stan
    • A graphical model compiler
  • Jayes
    • Bayesian networks in Java
  • ToPS
    • Probabilistic models of sequences
  • PyMC
    • Bayesian Models in Python

Text Stuff[edit]

Collaborative Filtering[edit]

  • PREA
    • Personalized Recommendation Algorithms Toolkit
  • SVDFeature
    • Collaborative Filtering and Ranking Toolkit

Computer Vision[edit]

  • OpenCV
    • Computer Vision Library
    • Has ML component (SVM, trees, etc)
    • Online tutorials here
  • DARWIN
    • Generic C++ ML and Computer Vision Library
  • PetaVision
    • Developing a real-time, full-scale model of the primate visual cortex.

Audio Processing[edit]

Data Visualization[edit]

  • Orange
    • Strong data visualization component
  • Gephi
    • Graph Visualization
  • ggplot
    • Nice plotting package for R
  • MayaVi2
    • 3D Scientific Data Visualization
  • Cytoscape
    • A JavaScript graph library for analysis and visualisation
  • plot.ly
    • Web-based plotting
  • D3 Ebook
    • Has a good list of HTML/CSS/Javascript data visualization tools.
  • plotly
    • Python plotting tool

Cluster Computing[edit]

  • Mahout
    • Hadoop cluster based ML package.
  • STAR: Cluster
    • Easily build your own Python computing cluster on Amazon EC2

Database Stuff[edit]

  • MADlib
    • Machine learning algorithms for in-database data
  • Manta
    • Distributed object storage

Neural Simulation[edit]

Other[edit]

Presentations and other Materials[edit]

Topics to Learn and Teach[edit]

NBML Course - Noisebridge Machine Learning Curriculum (work-in-progress)

CS229 - The Stanford Machine learning Course @ noisebridge

  • Supervised Learning
    • Linear Regression
    • Linear Discriminants
    • Neural Nets/Radial Basis Functions
    • Support Vector Machines
    • Classifier Combination [1]
    • A basic decision tree builder, recursive and using entropy metrics
  • Reinforcement Learning
    • Temporal Difference Learning
  • Math, Probability & Statistics
    • Metric spaces and what they mean
    • Fundamentals of probabilities
    • Decision Theory (Bayesian)
    • Maximum Likelihood
    • Bias/Variance Tradeoff, VC Dimension
    • Bagging, Bootstrap, Jacknife [2]
    • Information Theory: Entropy, Mutual Information, Gaussian Channels
    • Estimation of Misclassification [3]
    • No-Free Lunch Theorem [4]
  • Machine Learning SDK's
    • OpenCV ML component (SVM, trees, etc)
    • Mahout a Hadoop cluster based ML package.
    • Weka a collection of data mining tools and machine learning algorithms.
  • Applications
    • Collective Intelligence & Recommendation Engines

Meeting Notes[edit]