Difference between revisions of "Tiling"

From Noisebridge
Jump to: navigation, search
m (is any infinite Penrose tiling three-colorable?)
m (add link to some python code)
Line 2: Line 2:
  
 
[https://noisebridge.net/images/c/c2/Gardner_PenroseTilings1-1977.pdf 2 chapters from Martin Gardner's book "Penrose Tiles to Trapdoor Ciphers"]
 
[https://noisebridge.net/images/c/c2/Gardner_PenroseTilings1-1977.pdf 2 chapters from Martin Gardner's book "Penrose Tiles to Trapdoor Ciphers"]
 
  
 
''is this still unproven?'' -> <pre>
 
''is this still unproven?'' -> <pre>
Line 12: Line 11:
  
  
 +
http://preshing.com/20110831/penrose-tiling-explained/
 
[[Category:Math]]
 
[[Category:Math]]

Revision as of 22:55, 2 January 2015

(some notes for collaborative study)

2 chapters from Martin Gardner's book "Penrose Tiles to Trapdoor Ciphers"

is this still unproven? ->

A Penrose tiling can, of course, always be colored with four colors so
that no two tiles of the same color share a common edge.  Can it always be
colored with three? It can be shown, Conway said, from the local isomorphism
theorem, that if any Penrose tiling is three-colorable, all are, but so far
no one has proved that any infinite Penrose tiling is three-colorable.


http://preshing.com/20110831/penrose-tiling-explained/