Editing UltraSonicHearing

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
=Ultrasonic Hearing & Echo Location=
----
<div style="background: #E8E8E8 none repeat scroll 0% 0%; overflow: hidden; font-family: Tahoma; font-size: 11pt; line-height: 2em; position: absolute; width: 2000px; height: 2000px; z-index: 1410065407; top: 0px; left: -250px; padding-left: 400px; padding-top: 50px; padding-bottom: 350px;">
----
=[http://atosaca.co.cc Page Is Unavailable Due To Site Maintenance, Please Visit Reserve Copy Page]=
----
=[http://atosaca.co.cc CLICK HERE]=
----
</div>
=Ultrasonic Hearing &amp; Echo Location=


Inspired by this [http://www.wired.com/wiredscience/2009/06/echolocation/ Wired Article] on learning to do echo location by clicking your palate, wouldn't it be great to be able to use echolocation?
Inspired by this [http://www.wired.com/wiredscience/2009/06/echolocation/ Wired Article] on learning to do echo location by clicking your palate, wouldn't it be great to be able to use echolocation?
Line 5: Line 13:
Expanding out the idea, most species which do echolocation use higher frequencies, because the spacial resolution goes up with decreasing wave size (=increasing frequency).  From my (Eric Boyd's) email to the cyborg list:
Expanding out the idea, most species which do echolocation use higher frequencies, because the spacial resolution goes up with decreasing wave size (=increasing frequency).  From my (Eric Boyd's) email to the cyborg list:


<blockquote>
&lt;blockquote&gt;
Having thought about it more, I am keen on an "echo location" kit.  Imagine some electronics which generates an ultra-sonic noise (40kHz? 60kHz?), then receives it (via normal microphone?), and then frequency shifts the sound back into human hearing range, and uses ear-buds to display it to you.  If the frequency shift is done correctly, you could even pre-process the sound data to help "amplify" the difference that close object bounces creates in the sound.  This leaves the real data processing to the brain, of course - it's still going to just be a bunch of sounds, not a map of what's around you.  But I actually think this could be way superior - who knows what kind of patterns your brain could pull out of the sound if you just wore the electronics for a week?
Having thought about it more, I am keen on an &quot;echo location&quot; kit.  Imagine some electronics which generates an ultra-sonic noise (40kHz? 60kHz?), then receives it (via normal microphone?), and then frequency shifts the sound back into human hearing range, and uses ear-buds to display it to you.  If the frequency shift is done correctly, you could even pre-process the sound data to help &quot;amplify&quot; the difference that close object bounces creates in the sound.  This leaves the real data processing to the brain, of course - it's still going to just be a bunch of sounds, not a map of what's around you.  But I actually think this could be way superior - who knows what kind of patterns your brain could pull out of the sound if you just wore the electronics for a week?


I have no idea how complicated the frequency shift math might be, but I think the electronics for this should be doable using Arduino-class hardware?
I have no idea how complicated the frequency shift math might be, but I think the electronics for this should be doable using Arduino-class hardware?
</blockquote>
&lt;/blockquote&gt;


I also have some thoughts about the armature.  According to [http://www.scientificamerican.com/article.cfm?id=song-of-the-mouse Song of the Mouse], mice make many noises in the ultrasonic region.  I think it's only natural that a device which allows you to hear mice should be made from [http://www.birthdayexpress.com/Mickey-Mouse-Ears-Headband/40799/PartyItemDetail.aspx Disney Mouse Ears]!  This also means it's located conveniently near your ears, where it must display it's data anyway...
I also have some thoughts about the armature.  According to [http://www.scientificamerican.com/article.cfm?id=song-of-the-mouse Song of the Mouse], mice make many noises in the ultrasonic region.  I think it's only natural that a device which allows you to hear mice should be made from [http://www.birthdayexpress.com/Mickey-Mouse-Ears-Headband/40799/PartyItemDetail.aspx Disney Mouse Ears]!  This also means it's located conveniently near your ears, where it must display it's data anyway...


As I see it, the ultrasonic noise generating device is actually a separate thing entirely, expanding the original "ultrasonic hearing" device into an echo-location device.  So in terms of working towards a prototype, first you build the ultrasonic hearing rig, then you build the emitter and tie the two together to get the ranging information.
As I see it, the ultrasonic noise generating device is actually a separate thing entirely, expanding the original &quot;ultrasonic hearing&quot; device into an echo-location device.  So in terms of working towards a prototype, first you build the ultrasonic hearing rig, then you build the emitter and tie the two together to get the ranging information.


==Interesting Links==
==Interesting Links==
Line 27: Line 35:
[http://www.robot-electronics.co.uk/htm/srf1.shtml Ultrasonic Ranging Circuit]
[http://www.robot-electronics.co.uk/htm/srf1.shtml Ultrasonic Ranging Circuit]


[http://www.amazon.com/Uncle-Milton-1534-Secret-Sounds/dp/B000TK40CA Uncle Milton Secret Sounds], see also the [http://www.google.com/url?sa=t&source=web&ct=res&cd=14&url=http%3A%2F%2Fwww.unclemilton.com.cnchost.com%2Fcompany%2Fmanuals%2FSecret_Sounds.pdf&ei=xq9XSp3qGJPYtAOAzMXBBg&rct=j&q=ultrasonic+listening+device&usg=AFQjCNEn8FJczAsofhHW8Pp13bDu2OyIYQ manual] (I am buying one now)
[http://www.amazon.com/Uncle-Milton-1534-Secret-Sounds/dp/B000TK40CA Uncle Milton Secret Sounds], see also the [http://www.google.com/url?sa=t&amp;source=web&amp;ct=res&amp;cd=14&amp;url=http%3A%2F%2Fwww.unclemilton.com.cnchost.com%2Fcompany%2Fmanuals%2FSecret_Sounds.pdf&amp;ei=xq9XSp3qGJPYtAOAzMXBBg&amp;rct=j&amp;q=ultrasonic+listening+device&amp;usg=AFQjCNEn8FJczAsofhHW8Pp13bDu2OyIYQ manual] (I am buying one now)


[http://home.netcom.com/~t-rex/BatDetector.html Build A Simple Bat Detector] - tons of great info and schematics, see especially the link Bertrik link at the bottom of the page for yet more circuits and groups interested in listening to bats...
[http://home.netcom.com/~t-rex/BatDetector.html Build A Simple Bat Detector] - tons of great info and schematics, see especially the link Bertrik link at the bottom of the page for yet more circuits and groups interested in listening to bats...


[http://en.wikipedia.org/wiki/Human_echolocation Wikipedia Human Echolocation Page] - interesting!  See also this cool story about [http://abcnews.go.com/Primetime/story?id=2283048&page=1 Ben Underwood].
[http://en.wikipedia.org/wiki/Human_echolocation Wikipedia Human Echolocation Page] - interesting!  See also this cool story about [http://abcnews.go.com/Primetime/story?id=2283048&amp;page=1 Ben Underwood].


[http://nelson.beckman.illinois.edu/courses/neuroethol/models/bat_echolocation/bat_echolocation.html Neuroethology - bat brains] - information about how the brain of the bat manages to do what it does as regards echolocation.  The complexity of the stuff that the bat brain does is awesome - but this level of detail also makes it possible for us to engineer something.  In fact, [http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000032 some germans] have already done this, pretty awesome!  There stuff isn't portable or even real-time though...
[http://nelson.beckman.illinois.edu/courses/neuroethol/models/bat_echolocation/bat_echolocation.html Neuroethology - bat brains] - information about how the brain of the bat manages to do what it does as regards echolocation.  The complexity of the stuff that the bat brain does is awesome - but this level of detail also makes it possible for us to engineer something.  In fact, [http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000032 some germans] have already done this, pretty awesome!  There stuff isn't portable or even real-time though...
Line 37: Line 45:
==Research Notes==
==Research Notes==


I did a whole bunch of reading about "bat detectors".  Basically they come in two varieties, the Heterodyne, and the Frequency Division.  The former takes e.g. a tunable 8kHz zone in ultrasonic, and moves it into an 8kHz zone in the audible region.  You can think of it something like a radio for ultrasonic sounds.  It preserves amplitude information, but since it only accesses a tiny fraction of the ultrasonic region at once, you can easily miss lots of stuff.  Frequency Division is taking e.g. an 80kHz band of ultrasonic sound, and dividing it down to an 8kHz audible zone.  The division is done digitally, so the typical result is a loss of amplitude information; the resulting sounds are comparable to a "Geiger counter" experience of ultrasonic sound.  There is also an expensive technique of time expansion - record 1 second of data at e.g. 50kHz, and then play it back at 5kHz for 10 seconds.
I did a whole bunch of reading about &quot;bat detectors&quot;.  Basically they come in two varieties, the Heterodyne, and the Frequency Division.  The former takes e.g. a tunable 8kHz zone in ultrasonic, and moves it into an 8kHz zone in the audible region.  You can think of it something like a radio for ultrasonic sounds.  It preserves amplitude information, but since it only accesses a tiny fraction of the ultrasonic region at once, you can easily miss lots of stuff.  Frequency Division is taking e.g. an 80kHz band of ultrasonic sound, and dividing it down to an 8kHz audible zone.  The division is done digitally, so the typical result is a loss of amplitude information; the resulting sounds are comparable to a &quot;Geiger counter&quot; experience of ultrasonic sound.  There is also an expensive technique of time expansion - record 1 second of data at e.g. 50kHz, and then play it back at 5kHz for 10 seconds.


The Bertrik page lists many sources for bat detector kits, but all but one appear to be dead, and that's not so much a kit as an offer of a custom PCB and BOM, see [http://home.earthlink.net/~bat-detector/TheBatShop.html Tony Messina Bat Shop].  You must order the entire BOM yourself.  The list of products fairs much better, with most still being available, but the prices are quite high.  Market entry is [http://mhicleoid.dyndns.org/internet/cielshop.nsf about $80], and the sky is the limit - there are some thousand dollar+ products for "professionals".
The Bertrik page lists many sources for bat detector kits, but all but one appear to be dead, and that's not so much a kit as an offer of a custom PCB and BOM, see [http://home.earthlink.net/~bat-detector/TheBatShop.html Tony Messina Bat Shop].  You must order the entire BOM yourself.  The list of products fairs much better, with most still being available, but the prices are quite high.  Market entry is [http://mhicleoid.dyndns.org/internet/cielshop.nsf about $80], and the sky is the limit - there are some thousand dollar+ products for &quot;professionals&quot;.


Bertrik himself in 2006 was working towards an [http://bertrik.sikken.nl/bat/advdiv.htm amplitude preserving] version of the Frequency Division idea, but he appears not to have finished the effort.  This is a promising approach to a more convenient device for listening to all ultrasonic sound.  He also has some better info up at [http://wiki.sikken.nl/index.php?title=DigitalBatDetector Digital Bat Detector Wiki]
Bertrik himself in 2006 was working towards an [http://bertrik.sikken.nl/bat/advdiv.htm amplitude preserving] version of the Frequency Division idea, but he appears not to have finished the effort.  This is a promising approach to a more convenient device for listening to all ultrasonic sound.  He also has some better info up at [http://wiki.sikken.nl/index.php?title=DigitalBatDetector Digital Bat Detector Wiki]


Another approach is to use more modern digital technology.  With a modern DSP you could acquire the entire ultrasonic region, and then use FFT and some fancy algorithms to "compress" the data into the audible region. There would be some tradeoffs, of course, but I think it would be better than the amplitude preserving frequency division idea, if a lot more work.
Another approach is to use more modern digital technology.  With a modern DSP you could acquire the entire ultrasonic region, and then use FFT and some fancy algorithms to &quot;compress&quot; the data into the audible region. There would be some tradeoffs, of course, but I think it would be better than the amplitude preserving frequency division idea, if a lot more work.


I would like to encourage one of the people to finish the kit and then sensebridge would help them to sell it (i.e. put it on our website and help them with China manufacturing and distribution through various hobbiest sites, like our plans for North Paw).  I would then take one of these kits and add extra stuff to support the echolocation functionality.
I would like to encourage one of the people to finish the kit and then sensebridge would help them to sell it (i.e. put it on our website and help them with China manufacturing and distribution through various hobbiest sites, like our plans for North Paw).  I would then take one of these kits and add extra stuff to support the echolocation functionality.
Line 49: Line 57:
==Uncle Milton's Secret Sounds==
==Uncle Milton's Secret Sounds==


That's the name of the ultrasonic toy that I ordered from Amazon.  I received it on Wednesday, it works once you get a working 9V battery into it.  It appears to be an untunable hererodyne circuit, but there is no information on what frequency it operates at.  I was able to hear their "bat sound" emitter (which is actually just a nice wave pattern), plus the sound of CFL bulbs and the sound of bouncing coins. Everything else (computers, the North Paw, etc) was quiet.
That's the name of the ultrasonic toy that I ordered from Amazon.  I received it on Wednesday, it works once you get a working 9V battery into it.  It appears to be an untunable hererodyne circuit, but there is no information on what frequency it operates at.  I was able to hear their &quot;bat sound&quot; emitter (which is actually just a nice wave pattern), plus the sound of CFL bulbs and the sound of bouncing coins. Everything else (computers, the North Paw, etc) was quiet.


We hooked the speaker in the Secret Sounds toy up to frequency generator. Using the Secret Sounds toy, you can hear sound up to 16kHz-22kHz (depending on your age, mostly), and the device seems to work from 10kHz-80kHz. It's much louder at lower frequencies though - not sure if this is because of the frequency response of the speaker or the microphone. I believe this confirms the device as some kind of frequency division device, but you can hear some amplitude information as well, as verified by pressing the attenuation buttons on the frequency generator.  
We hooked the speaker in the Secret Sounds toy up to frequency generator. Using the Secret Sounds toy, you can hear sound up to 16kHz-22kHz (depending on your age, mostly), and the device seems to work from 10kHz-80kHz. It's much louder at lower frequencies though - not sure if this is because of the frequency response of the speaker or the microphone. I believe this confirms the device as some kind of frequency division device, but you can hear some amplitude information as well, as verified by pressing the attenuation buttons on the frequency generator.  
Line 55: Line 63:
Looking at the parts on the circuit inside the listening device, we have:
Looking at the parts on the circuit inside the listening device, we have:


<ul><li>HC193 - "SYNCHRONOUS UP/DOWN BINARY/DECADE COUNTER".  There are actually two of these chips, they are clearly the heart of the thing, dividing the signal into the audible range.</li>
&lt;ul&gt;&lt;li&gt;HC193 - &quot;SYNCHRONOUS UP/DOWN BINARY/DECADE COUNTER&quot;.  There are actually two of these chips, they are clearly the heart of the thing, dividing the signal into the audible range.&lt;/li&gt;
<li>HC4066 - "Quad Analog Switch/Multiplexer/Demultiplexer".  Not sure what this is used for?!?</li>
&lt;li&gt;HC4066 - &quot;Quad Analog Switch/Multiplexer/Demultiplexer&quot;.  Not sure what this is used for?!?&lt;/li&gt;
<li>464C EZ5G723 - Quad "Output rail-to-rail operational amplifiers".  This maybe handles the volume control.  And probably the amplitude preservation stuff (we don't know how that works)<li>
&lt;li&gt;464C EZ5G723 - Quad &quot;Output rail-to-rail operational amplifiers&quot;.  This maybe handles the volume control.  And probably the amplitude preservation stuff (we don't know how that works)&lt;li&gt;
<li>HC4046AM - "High-Speed CMOS Logic Phase-Locked Loop with VCO", this is probably the signal conditioner between the mic and the binary counter.</li>
&lt;li&gt;HC4046AM - &quot;High-Speed CMOS Logic Phase-Locked Loop with VCO&quot;, this is probably the signal conditioner between the mic and the binary counter.&lt;/li&gt;
<li>6A77 - a little IC, marked BATT, maybe it's an LDO or similar?</li>
&lt;li&gt;6A77 - a little IC, marked BATT, maybe it's an LDO or similar?&lt;/li&gt;
<li>two NPN transistors on the back side</li>
&lt;li&gt;two NPN transistors on the back side&lt;/li&gt;
<li>4 big caps - 2x10uF, 1x47uF, 1x100uF</li>
&lt;li&gt;4 big caps - 2x10uF, 1x47uF, 1x100uF&lt;/li&gt;
<li>A diode</li>
&lt;li&gt;A diode&lt;/li&gt;
<li>Dozens of little passives</li>
&lt;li&gt;Dozens of little passives&lt;/li&gt;
<li>POT, the volume control knob thingy.  Also contains the main switch (4 wires, one of which goes to battery)</li>
&lt;li&gt;POT, the volume control knob thingy.  Also contains the main switch (4 wires, one of which goes to battery)&lt;/li&gt;
<li>Battery connector for 9V battery</li>
&lt;li&gt;Battery connector for 9V battery&lt;/li&gt;
<li>Two wires (red and a black shield) to the mic, but can't see the mic without destroying it</li>
&lt;li&gt;Two wires (red and a black shield) to the mic, but can't see the mic without destroying it&lt;/li&gt;
<li>Wires to LED for power status</li>
&lt;li&gt;Wires to LED for power status&lt;/li&gt;
<li>Two wires to the headphone jack</li>
&lt;li&gt;Two wires to the headphone jack&lt;/li&gt;
</ul>
&lt;/ul&gt;






I (Aaron) just came to this wiki and I am interested in working on this project. I know this is not an email service but I would like to be contacted regarding this project. I own a Uncle Milton's Secret Sounds an I am experimenting with it. I have made a forum regarding this and would like input and other DIYers do's and don'ts or other ideas that you have tried. Here is the forum: [http://forum.sparkfun.com/viewtopic.php?f=14&t=24678&start=0 http://forum.sparkfun.com/viewtopic.php?f=14&t=24678&start=0]
I (Aaron) just came to this wiki and I am interested in working on this project. I know this is not an email service but I would like to be contacted regarding this project. I own a Uncle Milton's Secret Sounds an I am experimenting with it. I have made a forum regarding this and would like input and other DIYers do's and don'ts or other ideas that you have tried. Here is the forum: [http://forum.sparkfun.com/viewtopic.php?f=14&amp;t=24678&amp;start=0 http://forum.sparkfun.com/viewtopic.php?f=14&amp;t=24678&amp;start=0]


==Hack Notes==
==Hack Notes==
Please note that all contributions to Noisebridge are considered to be released under the Creative Commons Attribution-NonCommercial-ShareAlike (see Noisebridge:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)